ESA Return to http://www.halos.com/book/ctm-app-17-i.htm. ESA

Creation's Tiny Mystery
Appendix: Radiohalos in a Radiochronological and Cosmological Perspective

< Prev  T of C  ...  12  13  14  15  Epi.  Cat.  App.  Ref.  Cred.  Next >

Doc.:  T of C  ...  #13  #14  #15  #16  #17  #18  #19  #20  #21  ...

Part:  ...  D  E  F  G  H  I  J  K  L

A Creation Model of the Structure of the Universe

Decades of research in astronomy and cosmology have led to the general belief that the present state of the universe can ultimately be traced to an initial event popularly known as the Big Bang. Despite this popularity it should be remembered that the Big Bang cosmological model is only as valid as the fundamental premises which support it. Thus the discussion of the proposed creation model of the universe must necessarily also focus on the validity of the Big Bang theory, whose basic framework consists of the cosmological and uniformitarian principles together with the general theory of relativity. The previous sections of this article have documented the failure of the uniformitarian principle to provide confirmation for the geological evolution of the Precambrian granites. If this principle cannot account for the evolution of the earth, is it difficult to understand how it can provide a rational basis for constructing an evolutionary model of the universe. It may be argued, however, that the edifice of modern cosmology fits together too well for there to be something wrong with basic assumptions. This point will receive close examination in the following discussion of the hot Big Bang Model (31,32).

The Big Bang Model and the Hubble Relation

About 50 years ago Hubble proposed that the astronomical data then available seemed to linearly relate the redshift z of a galaxy with the distance R to [p. 284] the galaxy, and this has become known as the Hubble relation. Since then galactic redshifts have been mainly interpreted as Doppler shifts resulting from high recessional velocities of the distant galaxies and, moreover, have been generally thought to provide some of the strongest evidence for the hot Big Bang model of an expanding universe. (See, however, Hetherington's evaluation (33) of the Hubble relation.) The reason for confidence in this interpretation is that by using the general theory of relativity as the mathematical basis for calculating the space-time development of the primeval fireball, it is possible to derive the z R Hubble relation (31,32) provided certain assumptions are made.

Notwithstanding the general belief that the accumulated astronomical data do support a z R relation, the fact is that over the past two decades several detailed studies of redshift distributions have been published which call the Hubble relation into question. As early as 1962 Hawkins (34) claimed that the redshift data indicated an approximate quadratic-distance redshift relation, in particular z R2.22. More recently the case for a z R2 relation (for low z) was considerably reinforced by the extensive statistical analyses of Segal (35) and of Nicoll and Segal (36). Even though these latter results have been disputed by Sandage et al. (37), it appears that Nicoll and Segal (38) have responded with stronger evidence for a z R2 relation. In fact, Nicoll et al. (39) have gone so far as to claim statistical invalidation of the Hubble relation for low values of z. At a minimum the foregoing results make it very difficult to believe that the redshift data as presently interpreted actually support the Hubble relation, which is the cornerstone of Big Bang cosmology.

As noted above, the latest analyses of Nicoll and Segal (38) show the redshift data more closely fit what is thought to be the equivalent of a quadratic rather than a linear distance relation. The reason for qualifying the last statement is because astronomers measure not distances but apparent magnitudes, which are first corrected for various factors before being used as a basis for establishing the magnitude-redshift relation. One important correction involves the assumption that the galactic light intensity (for any given frequency interval) as observed on earth is reduced by two factors of 1 + z, one for the redshift itself, and the other for the presumed galactic recession. Of course if the galaxies are not receding, then an unwarranted factor has been introduced into the magnitude correction procedures, and this would affect the perceived redshift distributions.

The Big Bang Model and the Cosmic Microwave Radiation (CMR)

In 1978 Penzias and Wilson received the Nobel prize in physics for their discovery of the CMR in 1965. Since then it has been widely claimed that this pervasive radiation field is a relic of the time eons ago when radiation quanta decoupled from matter in the primeval fireball (31). According to this theory, the decoupling presumably occurred about 300,000 years after the Big Bang when the primeval fireball had expanded and its temperature had dropped to the point where matter and radiation ceased to interact as it had before. After this time, supposedly about 15 billion years ago, it is believed that this radiation propagated throughout space in an unobstructed fashion to eventually become the CMR. It is essential to note that the radiation leaving the primeval fireball at the time of decoupling was presumably still quite hot (about 3000°K). The experimental measurements of the CMR temperature at present reveal that it is very cold (3°K). But if the radiation from the primeval fireball is assumed not to interact with matter after the time of decoupling, then how did this initially [p. 285] hot radiation lose its energy, or temperature, to later become the 3°K CMR? The standard explanation is that the general relativistic analysis of the space-time expansion of the primeval fireball predicts that the decoupled radiation quanta will lose energy just as a result of the expansion of the universe. There is, however, nothing in modern experimental physics which suggests that radiation quanta change energy by moving through free space. Thus, the standard explanation for this remarkable thousand-fold energy loss in the decoupled radiation quanta depends upon an aspect of general relativity that is unsupported by scientific evidence.

To avoid possible misunderstandings, some recent experimental results of gravitational effects on photons will be discussed. Einstein's principle of equivalence, which is independent of general relativity, does not distinguish whether a photon traversing a gravitational potential gradient undergoes a change in energy in transit, or whether its energy is uniquely determined by the gravitational potential at the point of emission. The earliest Mossbauer experiments (40) on the gravitational redshift could not distinguish between these two alternatives, and it was widely believed that the photon energy could change when passing through a difference in gravitational potential. But recent experimental results (41) suggest the photon energy is characterized by the gravitational potential at the point of emission rather than varying as the photon moves to a different potential. In the light of these results it is quite difficult for me to believe that radiation quanta can undergo energy loss in free space as predicted in the general relativistic Big Bang model. At this point my views on the theory of relativity need to be clarified.

I recognize there are some notable experimental results in physics such as apparent time dilation, the transverse Doppler effect, the increase in mass with velocity, and the gravitational bending of light, which are in accord with the predictions of the theory of relativity. However, these experimental results cannot be used as confirmations of the special or general theory of relativity because there are other (albeit far lesser known) theories which predict similar results. (See for instance North's (42) review of various alternative theories of gravitation and their predictions.) Further, recently Rastall (43) and especially Marinov (44) have shown independently that it is not necessary to assume the general relativistic framework to obtain many of the same mathematical results. On the other hand, the question of whether the Big Bang model is a correct description of the origin and evolutionary development of the universe is entirely hinged on the ultimate validity of general relativity's fundamental postulate, which in principle denies that privileged reference frames exist. Very germane to this discussion is the recent admission (45) of an eminent physicist to the effect that the CMR presents undeniable experimental evidence for the existence of an absolute reference frame in the universe, a result which is consistent with Marinov's (44) evidence for absolute space-time and also with at least one of the earlier gravitational theories reviewed by North (42). This point is treated in more detail subsequently and it is shown that the existence of the CMR as an absolute reference frame is perhaps the most important evidence that can be adduced for the creation model of the universe as proposed herein. Before engaging in this discussion further, it is necessary to complete the present discussion of the CMR and the Cosmological Principle.

Measurements have shown the spatial distribution of the CMR is so uniform that it is questionable whether it could have been produced by the Big Bang scenario as it was originally conceived. Weisskopf (45) has recently reviewed the nature of this and other problems with the Big Bang model, and has discussed [p. 286] the provisional solutions offered by postulating an explosive expansion in the very early stages of the Big Bang. Questions still remain, however, not the least being that the entire scenario assumes some type of grand unification theory which has yet to be verified. But is it consistent for cosmologists on one hand to claim that the universe evolved only through the action of known physical laws and on the other hand to devise solutions to cosmological problems by using unverified hypotheses as a basis for those solutions? We have already noted the failure of the uniformitarian principle to successfully account for the origin of Po halos in Precambrian granites, or to provide a basis for synthesis of a piece of granite. In a similar manner it seems the introduction of unverified physical concepts as the basis for possible solutions to difficult evolutionary cosmological problems is just the inevitable result of the failure to explain the creation of the universe on the basis of the uniformitarian principle. In any event, the newly proposed expansionary modification to the Big Bang only deals with the earliest instants of the Big Bang, after which it is supposed the expansion of the primeval fireball continues as envisioned in the original Big Bang model. As we shall soon see, it appears there may be a contradiction involved in the theoretical development of expansion of the fireball.

Book Cover Photo

Get the entire printed version of our book for $18 + S/H.

To order our book and/or videos,

Call Us at (800) 467-6380, or use our order form.

Part:  ...  D  E  F  G  H  I  J  K  L

Doc.:  T of C  ...  #13  #14  #15  #16  #17  #18  #19  #20  #21  ...

< Prev  T of C  ...  12  13  14  15  Epi.  Cat.  App.  Ref.  Cred.  Next >


The above page was found at http://www.halos.com/book/ctm-app-17-i.htm on October 22, 2014.

© 2004
Earth Science Associates